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LETTER TO THE EDITOR

High-order equations of motion in quantum mechanics and
Galilean relativity
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‡ Institute of Mathematics of the National Academy of Sciences of Ukraı̈na, 3 Tereshchenkivs’ka
Street, 252004 Kÿıv, Ukräına

Received 1 October 1996, in final form 3 December 1996

Abstract. Linear partial differential equations of arbitrary order invariant under the Galilei
transformations are described. Symmetry classification of potentials for these equations in two-
dimensional space is carried out. High-order nonlinear partial differential equations invariant
under the Galilei, extended Galilei and full Galilei algebras are studied.

Non-relativistic quantum mechanics is based on the equation

L9 ≡ (S + V )9 = 0 (1)

where S = p0 − p2
a/2m, p0 = i∂/∂x0 = i∂/∂t , pa = −i∂/∂xa, V = V (x, 9∗9). In

the case whereV is a function only ofx, equation (1) coincides with the standard linear
Schr̈odinger equation.

The fundamental property of (1) (in the caseV = 0) is the fact that this equation is
compatible with the Galilean relativity principle. In other words, equation (1) (V = 0) is
invariant under the Galilei groupG(1, 3). The Lie algebraAG(1, 3) = 〈P0, Pa, Jab,Ga〉 of
the Galilei group is generated (see, e.g., [1, 2]) by the operators

P0 = p0 Pa = pa
Jab = xapb − xbpa a 6= b, a, b = 1, 2, 3 (2)

Ga = tpa −mxa.
The operators〈Ga〉 generate the standard Galilei transformations

t → t ′ = t xa → x ′a = xa + vat.

Definition 1. We say that the equation of type (1) is compatible with the Galilei principle
of relativity if it is invariant under the operators〈P0, Pa, Jab, Ga〉.

Let X be one of the operators〈P0, Pa, Jab, Ga〉.
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Definition 2. Equation (1) is invariant under the operatorX if the following condition is
true:

X
(2)
L9

∣∣∣∣
L9=0

= 0 (3)

whereX
(2)

is the second Lie prolongation of the operatorX [1–4].

The equation of type (3) is a Lie condition of invariance of the equation under the Lie
algebra. In our case, it is the condition of invariance under the algebraAG(1, 3).

Theorem 1. ([1, 2, 5]) Among linear equations of the first order int and of the second order
in the space variablesx there exists the unique equation (1) (V = λ = constant) invariant
under the algebraAG(1, 3) with the basic elements (2).

Conclusion. We can regard the theorem formulated above as a method of deriving the
Schr̈odinger equation from the Galilei principle of relativity [5, 6].

In the present paper, we give the answer to the following question: Do there exist
equations not equivalent to the Schrödinger equation for which the Galilei principle of
relativity is true?

In [6, 7], the following generalization of the Schödinger equation was proposed,

(λ1S + λ2S
2+ · · · + λnSn + V )9 = 0 (4)

whereS2 = SS, . . . , Sn = Sn−1S, λ1, λ2, . . . , λn are arbitrary parameters.
If V = 0, equation (4), as well as equation (1), is invariant under the algebraAG(1, 3),

i.e. this equation is compatible with the Galilei principle of relativity. Is this equation
unique among high-order linear equations? In what follows, we find a positive answer for
this question.

More precisely, we solve the following problems.
(i) We describe all linear equations of arbitrary order invariant under the algebga

AG(1, 3).
(ii) We describe the maximal (in Lie sense) symmetry of equation (4) in the two-

dimensional space(t, x).
(iii) We describe nonlinear equations of type (4) invariant under the algebraAG(1, 3),

the extended Galilei algebraAG1(1, 3) = 〈AG(1, 3),D〉, and the full Galilei algebra
AG2(1, 3) = 〈AG1(1, 3), A〉. D and A are the dilation and projective operators,
respectively.

(i) For solving the above problems we use the method described in [1, 2, 5–7].

Theorem 2. A: Among linear partial differential equations (PDE) of arbitrary even order
2n

L9 = 0

L = A+ Bµ∂µ + Cµν∂µν +Dµνσ ∂µνσ + · · · + E
2n︷ ︸︸ ︷

µνσ ...κ∂µνσ ...κ︸ ︷︷ ︸
2n

(5)

there exists the unique equation

(λ1S + λ2S
2+ · · · + λnSn)9 = λ9 (6)

invariant under the algebraAG(1, 3).
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B: There are no linear PDE of arbitrary odd order 2n+ 1

L9 = 0

L = A+ Bµ∂µ + Cµν∂µν +Dµνσ ∂µνσ + · · · + E
2n︷ ︸︸ ︷

µνσ ...κ∂µνσ ...κ︸ ︷︷ ︸
2n

+G
2n+1︷ ︸︸ ︷

µνσ ...κρ∂µνσ ...κρ︸ ︷︷ ︸
2n+1

(7)

with one non-zero coefficient of the highest derivatives at least, invariant underAG(1, 3).

Here, A,Bµ,Cµν,Dµνσ , . . . , E

2n︷ ︸︸ ︷
µνσ ...κ , G

2n+1︷ ︸︸ ︷
µνσ ...κρ are arbitrary functions oft and

x; λ1, λ2, . . ., λn, λ are arbitrary constants,λn 6= 0; ∂µ ≡ ∂/∂xµ, ∂µν ≡
∂2/∂xµ∂xν, . . . (µ, ν, . . . , ρ = 0, 3).

Proof. The scheme and idea of the proof of the theorem is very simple but the concrete
realization is not simple. We describe in more detail the proof of part A. Part B is proved
in the same way as the first part of the theorem.

According to the Lie method [1, 3, 4], we find the 2nth prolongations of the operators
(2) and consider the system of determining equations

X
(2n)

L9

∣∣∣∣
L9=0

= 0 ∀X ∈ AG(1, 3). (8)

Writing equations (8) in the explicit form and equating coefficients for equal derivatives,
we solve the system of partial differential equations to obtain functionsA, Bµ, Cµν , Dµνσ ,

. . ., E

2n︷ ︸︸ ︷
µνσ ...κ .

Invariance of equation (5) under the operatorsP0, Pa results in the fact that functionsA,

Bµ, Cµν , Dµνσ , . . ., E

2n︷ ︸︸ ︷
µνσ ...κ do not depend ont andx, i.e. these coefficients are arbitrary

constants. In other words, our PDE has the formL9 ≡ Q(1)(p0, pa)9 = 0, whereQ(1) is
a polynomial in(p0, pa) with constant coefficients.

After taking into account the invariance under the operatorsJab, we find that the equation
has the formL9 ≡ Q(2)(p0, p

2
a)9 = 0, whereQ(2) is a polynomial in(p0, p

2
a). After

considering the invariance under the Galilei operatorsGa, we obtain that the equation has
the formL9 ≡ Q(3)(p0−(1/2m)p2

a)9 = 0, whereQ(3) is a polynomial in(p0−(1/2m)p2
a).

In other words, the equation has the form (6). The theorem is proved. �

Consequence.Among fourth-order linear PDEs there exists the unique equation invariant
under the algebraAG(1, 3) with basic operators (2). This equation has the form

(λ1S + λ2S
2)9 = λ9

whereλ2 6= 0.

(ii) Now, we consider equation (4) in two dimensionst, x and carry out symmetry
classification of the potentialsV = V (x) of this equation, i.e. we find all functionsV = V (x)
admitting an extension of symmetry of (4). The following statement is true.

Theorem 3. The two-dimensional equation (4) withλn 6= 0, n 6= 1 is invariant under the
following algebras:

(1) 〈P0, I 〉, iff V (x) is an arbitrary differentiable function;
(2) AG(1, 1) = 〈P0, P1,G, I 〉, iff V = constant;
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(3) AG2(1, 1) = 〈P̃0, P1,G,D,A, I 〉, iff V = V1 = constant the following equalities
are true:

λk

λn
=
(
n

k

)(
V1

λn

)(n−k)/n
k = 1, . . . , n− 1; (9)

(4) 〈P̃0,D,A, I 〉, iff V = V1+C/x2n, V1, C are constants and (9) are true.
(
n

k

)
are the

binomial coefficients.

The operators in theorem 3 have the following representation:

P0 = p0 P1 = p1 G = tp1−mx
P̃0 = p̃0 = P0+ n

√
V1/λn D = 2t p̃0− xp1− (i/2)(2n− 3) (10)

A = t2p̃0− tD − (1/2)mx2

I is the unit operator.

Consequence. The 2nth-order PDE

(Sn + V (x))9 = 0

is invariant under the following algebras:
(1) 〈P0, I 〉, iff V (x) is an arbitrary differentiable function;
(2) AG(1, 1) = 〈P0, P1,G, I 〉, iff V = constant;
(3) AG2(1, 1) = 〈P0, P1,G,D,A, I 〉, iff V = 0;
(4) 〈P0,D,A, I 〉, iff V = C/x2n whereC is an arbitrary constant.

The above operators have representation (10) withV1 = 0.

Note that symmetry classification of potentials for the fourth-order PDE of the form

(λ1S + λ2S
2+ V (x))9 = 0

was carried out in [8]. In this case, symmetry operators have representation (10) with
V1 = λ2

1/4λ2 andn = 2.

(iii) Now, let us consider nonlinear PDEs of type (4) in(r + 1)-dimensional space:

Sn9 + F(99∗)9 = 0 (11)

where9∗ is complex conjugated function,n is an arbitrary integer power andF is an
arbitrary complex function of99∗

We study symmetry classification of (11), i.e. we find all functionsF(99∗) which
admit an extension of symmetry of equation (11).

Theorem 4. Equation (11) is invariant under the following algebras:
(1) 〈P0, Pa, Jab,Ga,Q1〉, iff F is an arbitrary differentiable function;
(2) 〈P0, Pa, Jab,Ga,Q1,Q2〉, iff F = constant6= 0;
(3) 〈P0, Pa, Jab,Ga,Q1, D̃〉, iff F = C(99∗)k, k 6= 0;
(4) 〈P0, Pa, Jab,Ga,Q1,D,A〉, iff F = C(99∗)(2n)/(r+2−2n);
(5) 〈P0, Pa, Jab,Ga,Q1,Q2,D,A〉, iff F = 0.
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Here, indicesa, b are from 1 tor, a 6= b, k is an arbitrary number (k 6= 0), and the above
operators have the following representation:

P0 = p0 Pa = pa Jab = xapb − xbpa Ga = t∂xa + imxaQ1

Q1 = 9∂9 −9∗∂9∗ Q2 = 9∂9 +9∗∂9∗
D̃ = 2t∂t + xc∂xc − (n/k)Q2 D = 2t∂t + xc∂xc −

r + 2− 2n

2
Q2

A = t2∂t + txc∂xc + (i/2)mxcxcQ1− r + 2− 2n

2
tQ2

where summation from 1 tor over the repeated indicesc is understood.

Thus, in the present paper, we have described the unique linear PDE of arbitrary even
order which is invariant under the Galilei group. We have investigated the exhaustive
symmetry classification of potentialsV (x) of (4) and functionsF(99∗) of the nonlinear
equation (11), i.e. we have pointed out all functions admitting an extension of the invariance
algebra.

The authors would like to thank an anonymous reviewer for kindness and helpful
suggestions. The paper is partly supported by INTAS, Royal Society, and the International
Soros Science Education Program (grant No PSU061097).
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